IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, APRIL 2018 1

Optimal Clustering Framework for Hyperspectral
Band Selection
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Abstract—[1] Band selection, by choosing a set of representa-
tive bands in hyperspectral image (HSI), is an effective method
to reduce the redundant information without compromising the
original contents. Recently, various unsupervised band selection
methods have been proposed, but most of them are based on
approximation algorithms which can only obtain suboptimal so-
lutions toward a specific objective function. This paper focuses on
clustering-based band selection, and proposes a new framework
to solve the above dilemma, claiming the following contributions:
1) An optimal clustering framework (OCF), which can obtain
the optimal clustering result for a particular form of objective
function under a reasonable constraint. 2) A rank on clusters
strategy (RCS), which provides an effective criterion to select
bands on existing clustering structure. 3) An automatic method
to determine the number of the required bands, which can
better evaluate the distinctive information produced by certain
number of bands. In experiments, the proposed algorithm is
compared to some state-of-the-art competitors. According to
the experimental results, the proposed algorithm is robust and
significantly outperform the other methods on various data sets.

Index Terms—Hyperspectral band selection, normalized cut,
dynamic programming, spectral clustering.

I. INTRODUCTION

YPERSPECTRAL image (HSI) processing has attracted

considerable attention in recent years. HSIs can provide
rich band information from different wavelengths and thus
get widely used in various research field, such as biological
analysis [2] and medical imaging processing [3]. HSIs record
the reflectances of electromagnetic waves of different wave-
lengths, and the reflectance of each electromagnetic wave is
stored in a 2-D image. Hence, a HSI is a data cube which
contains hundreds of 2-D images. Though significant success
in the field of HSI application has been obtained, how to
deal with the large dimensional data is still a challenging
problem, since high correlations and dependencies among
them cause huge computational complexity as well as “Hughes
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phenomenon” [4]. In view of this, the reduction in HSI is
deemed to be a very important work.

Generally, HSI reduction can be achieved by feature ex-
traction or feature selection (also known as band selection)
techniques. For feature extraction [5-9], the original HSI is
projected into a lower dimensional space and a reduced data
set is generated. While for band selection, some discriminative
bands are chosen to represent the original data set without
modification. In experiments, feature extraction could usually
achieve better performance. However, band selection is usually
more preferred since it can can preserve the information of the
original data in physical sense, making the reduced data sets
more interpretable.

According to the involvement of the labeled and the unla-
beled samples, band selection can be divided into supervised
[10-14], semi-supervised [15-18] and unsupervised [19-24]
methods. Supervised and semi-supervised methods utilize the
labeled samples to guide the selection process. However, since
the acquisition of the labeled samples is a difficult task,
sometimes they are not very practical in real application.
Therefore, we mainly focus on unsupervised band selection
in this paper.

According to the employed searching strategy [25], un-
supervised band selection can be categorized into ranking-
based, clustering-based, greedy-based and evolutionary-based
methods. Ranking-based methods assign each band a rank
value and simply select the top-rank bands with the desired
number. Clustering-based methods first separate all the bands
into clusters, and then select the most representative bands
in each cluster to constitute the band subset. Greedy-based
methods are iterative processes. In each iteration, the currently
optimal band will be selected founded on the previous results.

As for evolutionary-based methods, they first generate a
candidate band set, and then repeatedly update it via a spe-
cific evolutionary strategy until the convergence condition is
satisfied.

Taking an overall review of the above mentioned kinds
of band selection methods, one issue can be found that the
existing methods can only obtain an approximately optimal
solution. For example, greedy-based methods are only optimal
in current iteration, rather than in global. Also, evolutionary-
based methods are based on some random processes and
usually trapped into local optimums. The main reason of
this phenomenon is that the solution space of band selection
problem is too large to attain the optimal solution in limited
time. For point-wise selection [12], the number of ways to
select K bands from a L bands HSI is (IL() For group-
wise selection [12], the number of ways to cluster the bands
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increases to the Stirling Number of the Second Kind [26],
denoted as { L }. Suppose L = 200 and K = 15, the value
of (1) is about 10?2, and the value of { %} is about 10?2,
Consequently, achieving an optimal solution is considered
to be a very difficult task, especially for clustering-based
methods.

In this paper, we focus on clustering-based methods, and
propose a general framework which can uncover the optimal
clustering structure under a reasonable constraint.

The main contributions of this paper are listed as follows.

1) An optimal clustering framework (OCF) is proposed to
search for the optimal clustering structure in HSI. Though
achieving the optimal clustering result has been demonstrated
NP-hard for many kinds of objective function, the proposed
OCEF can still find the optimal solution under a reasonable
constraint for HSI data sets. Moreover, the proposed OCF is a
general framework, which means different kinds of objective
function can be optimized via the same procedure once they
comply with the specific form.

2) A ranking on clusters strategy (RCS) is proposed as an
effective criterion to select the representative bands under the
achieved clustering structure. By applying an arbitrary ranking
algorithm on the clustering result, RCS can better exploit the
advantages of clustering-based and ranking-based methods,
and generate a band subset with lower correlation and more
discriminative information.

3) An automatic method to determine the required number
of bands is proposed. Through reducing the correlation among
bands, we aim to uncover how much distinctive information
can be produced by certain number of bands. Experiments
show that this method can offer a promising estimation of
band number for various data sets.

The remainder of this paper is organized as follows. In
Section II, related unsupervised band selection methods are
introduced. In Section III, OCF and RCS are formulated. Then
in Section IV, we show some instances to implement a band
selection algorithm based on OCF and RCS. After that, the
experimental results on four real HSI data sets are shown in
Section V. Finally, conclusions are made in Section VI.

II. RELATED WORK

As introduced in Section I, unsupervised band selection can
be categorized into ranking-based, clustering-based, greedy-
based and evolutionary-based methods. In this section, some
representative band selection methods will be introduced se-
quentially.

A. Ranking-based methods

Ranking-based methods [27, 28] aim at designing a criterion
to evaluate the importance of each band, and use the top-rank
bands to constitute the band subset. The advantage of ranking-
based methods is that the most discriminative bands can be
discovered. However, there is usually high correlation among
the selected bands. To give examples, some representative
ranking-based methods will be introduced.

Maximum-variance principal component analysis (MVP-
CA) [27] is a joint band prioritization and band-decorrelation

approach. In MVPCA, a data-sample covariance matrix is
firstly constructed. Second, eigenvalue decomposition is per-
formed over the covariance matrix, and a loading factor
matrix is constructed. Finally, all the bands are prioritized
according to the loading factor matrix. From another point
of view, bands are prioritized by their variances essentially.
MVPCA is rational since bands with higher variances contain
more distinct information of ground objects and are more
discriminative in general. Nevertheless, it is sensitive to noisy
bands since they usually have large variances. Moreover, the
top-rank bands are usually highly correlated, leading to a large
amount of redundant information among the selected bands.
Constrained band selection (CBS) [28] is a band correlation
minimization process. It first design a finite impulse response
(FIR) filter for each band, and minimize the averaged least
squares filter output. Then bands are ranked according to
the solution of the above minimization problem since it can
measure the correlation between one particular band and the
entire HSI. CBS is less sensitive to noisy bands because they
usually have lower correlation with the other bands, and hence
will be assigned with smaller ranking values. But similar to
MVPCA, the top-rank bands may still be highly correlated
since the interaction among the selected bands are neglected.

B. Clustering-based methods

Clustering-based methods [29-34] first separate the whole
bands into clusters, and then select one in each to constitute
the band subset. Unlike ranking-based methods, clustering-
based methods focus on the reduction of the correlation among
bands. In the following, several representative methods are
listed and discussed.

In WaLuMI and WalLuDi [29], hierarchical clustering is
utilized to partition the bands into clusters. In order to measure
the distances among these bands, two criteria are involved,
known as mutual information and Kullback-Leibler diver-
gence. First, the total band set is separated into clusters using
the Ward’s linkage method. After that, the band which has
the highest similarity with the other bands is selected in each
cluster. Through hierarchical clustering, WaLuMI and WaLuDi
can effectively reduce the correlation among bands. However,
these methods are sensitive to noisy bands since they usually
have low correlations with the others and easy to form single-
band clusters.

Enhanced fast density-peak-based clustering (E-FDPC) [30]
can be viewed as a clustering-based as well as a ranking-
based method. Based on the idea that a cluster center should
have large local density and inter-cluster distance, E-FDPC
prioritizes each band via combining these two indicators.
Then similar to ranking-based methods, the top-rank bands are
selected to constitute the band subset. Through investigating
the intra-cluster distance of bands, E-FDPC can reduce the
possibility that two correlated bands are selected simultane-
ously. Nevertheless, it is difficult to measure the local density
and intra-cluster distance exactly.

Squaring  weighted low-rank subspace clustering
(SWLRSC) [31] firstly constructs a low-rank coefficient
matrix by solving the low-rank optimization problem. Then
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Fig. 1. The flowchart of the overall procedure to conduct band selection. First, given an objective function, we search for the optimal band partition via OCF
(in the figure, each color refers to a cluster of bands). Then all the bands are evaluated through an arbitrary ranking method. Finally the top-rank bands are

selected in each cluster.

a squaring weighted strategy is used to obtain the similarity
matrix. After that, the spectral clustering is conducted using
the matrix and the clustering result is generated. Finally, the
bands which are closest to the centroid of each cluster are
chosen to constitute the band subset. By constructing such
a low-rank coefficient matrix, the relationship among bands
can be better exploited. However, it’s time consuming to find
such a low-rank presentation for large-scale HSI data sets.

C. Greedy-based methods

Greedy-based methods [22, 35, 36] greedily select or re-
move one band from the candidate band subset, and make
sure that the objective function is optimized in each iteration.
Though the optimal solution cannot be obtained, greedy-based
methods still offer a good substitution to it. In the following,
two representative methods are introduced.

Volume gradient band selection (VGBS) [35] is a geometry-
based method, in which bands are treated as points lying in a
high dimensional space. In the beginning of the algorithm, all
of the bands are considered as candidate bands and constitute
a parallelotope. Then, bands lead to the minimal losses of
the parallelotope volume will be removed repeatedly. The
algorithm stops when the desired number of bands is remained
in the subset. VGBS can effectively reduce the correlation
among bands since low-correlated bands often construct a
large-volume parallelotope. Nevertheless, noisy bands often
contribute a lot to this volume and are easy to be selected.
Hence VGBS often do not perform well in data sets with large
noises.

Different from VGBS, sequential forward selection (SFS)
[36] starts with an empty band subset, and iteratively adds
bands to it until the desired number of them have been
obtained. Minimum estimated abundance covariance (MEAC)
is the objective function in SFS. In each iteration, the band
which can maximally decrease the MEAC value of current
band subset will be selected. SFS method is efficient in
computation, but sensitive to the initial condition.

D. Evolutionary-based methods

Evolutionary-based methods [18, 21, 37, 38] first generate a
band subset with the desired number of bands randomly, and
then apply some evolutionary algorithms to update it, seeking
a nearly optimal solution. Here two representative methods are
introduced.

In multi-task sparsity pursuit (MTSP) [37], a compressive
band descriptor is first constructed as a reduction of the origi-
nal HSI. Then a multi-task learning based criterion is proposed
to evaluate the effectiveness of the band descriptor. Finally the
immune clonal strategy is utilized to search for the optimal
band combination. Compared to greedy-based methods, the
utilized immune clonal strategy is proved with powerful global
searching ability. However, in order to accelerate the calcula-
tion of the objective function, some intrinsic information is
lost when constructing the compressive descriptor.

Multi-objective optimization band selection (MOBS) [21]
presents a multi-objective model for band selection, in which
information entropy and the number bands are considered as
two objective functions. They are optimized simultaneously by
a multi-objective evolutionary algorithm. MOBS is less sensi-
tive to parameters and can obtain a more stable performance,
but using the sum of information entropy to evaluate a band
subset is sometimes too simple to capture the interrelationship
among bands.

III. OPTIMAL CLUSTERING FRAMEWORK

This section details the proposed OCF and introduces the
overall procedure as shown in Fig. 1 to design a band selection
algorithm. First, the idea of dynamic programming is briefly
reviewed as the background knowledge. Second, the rationality
of CBIC is analysed and discussed. Third, the proposed
framework which can generate the optimal clustering result
is introduced and demonstrated. After that, a more general
framework is shown as an extension to the original one.
Finally, we propose a novel strategy to determine the selected
bands based on the achieved clustering result.
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A. Introduction to Dynamic Programming

Dynamic programming (DP) is an effective optimization
technique that was proposed by Berman (R.Bellman), etc. in
1951 [39, 40]. In DP, a complex problem is repeatedly broken
down into a series of subproblems until they are simple enough
to be resolved directly. Then these subproblems are constantly
combined to solve the more complex ones and finally solve
the original problem. One problem must have two attributes
to be suitable for DP.

1) Optimal substructure. This attribute says a problem can
be broken down into simpler subproblems with the same form,
and the solution of the original problem can be obtained
through these subproblems.

2) Overlapping subproblems. This means that while some
subproblems are broken down into simpler ones, there should
be overlaps among them. In other words, a subproblem should
be reused several times for the solving of different and more
complex subproblems. If this attribute is not satisfied, the
number of subproblems will increase exponentially, bringing
unaffordable computational complexity.

B. Contiguous Band Indexes Constraint

In HSI, bands represent the reflectance of the scene to elec-
tromagnetic waves in various wavelengths. Seen from physical
view, electromagnetic waves with closer wavelengths produce
similar reflectances. Hence bands with similar wavelengths
usually have stronger correlation [41, 42]. Fig. 2 plots all
the bands in Pavia University data set, in which each band is
vectorized and projected to a three-dimensional feature space
through PCA transformation. As we can see, when we connect
the bands in the order of their indexes, we get a very smooth
curve. This phenomenon further proves that strong correlation
exists between bands with close wavelengths. Inspired by this,
we propose a contiguous band indexes constraint (CBIC) for
band clustering problem, which claims that bands in the same
cluster should have contiguous wavelengths.

According to the analysis in Section I, the number of all the
possible solutions for band clustering problem is { % }. Under
the proposed constraint, this number is reduced to ( IL(:ll)
When L = 200 and K = 15, the value of (K 1) is about
102!, which is much smaller than that of { £} (= 10%23).
Consequently, the proposed constraint can effectively reduce
the size of the solution space for band clustering problem.

Owing to CBIC, the original clustering problem is converted
to finding a series of critical bands to separate the whole bands
into intervals. This enables us to search for the optimal solution
in a more efficient way.

C. OCF Formulization

This subsection details the proposed optimal clustering
framework (OCF). First, we define some notations that will
be used throughout the paper. Denote x; € RV*! as the I-th
band vector and X] {x;}]_, foreach 1 < i < j <L
as band intervals. Here N is the number of pixels, and
L is the number of bands in HSL. s = (sq,...,5x_1)"
specifies the critical band indexes vector (CBIV), in which

band number

Fig. 2. Spectral bands projected to a three-dimensional feature space through
PCA transformation on Pavia University data set.

0 < 81 < ... < sg_1 < L. Here s; is the index of the
i-th critical band, i.e., the last band of cluster 7, and K is
the number of selected bands. For convenience of expression,
we set so = 0,sx = L. Noting that once s is determined,
the whole band set can be separated into K subsets: X',
X2 , XK

s1+1° sK—1+1°

In a clusterlng algorithm, how to design an effective ob-
jective function is an important issue. A straightforward idea
is to individually evaluate the contribution of each cluster,
and then sum up these contributions as a measurement of the
whole clustering result. Though very simple, this strategy has
been adopted by many well-known clustering methods (e.g.,
k-means and spectral clustering [43]) and demonstrated to be
effective. .

Following this idea, we define a mapping f : {X] |1 <i <
j < L} — R to evaluate the contribution of each band interval
X7. Since the clustering result is determined by a series of
critical bands under CBIC, the contribution of cluster 7 can be
represented by (X’ ). Based on the above consideration,
a general form of the objective function Dy is given as:

Zf XSS; 1+1 (1)

Without loss of generahty, we assume that function Dy is
supposed to be maximized. So our optimization problem turns
to be:

K
max Z X5 ) 2
0<s1<...<sg_1<L = f( Sz—1+1) ()

After the optimization problem is clarified, the solution will
be given in two steps, named as problem decomposition and
subproblem combination, respectively. It should be pointed out
that, the mapping f here is still a general form, which means
the solution will be available for arbitrary definition of f.

1) Problem decomposition. Let M} be the solution of a
simpler subproblem of Eq. (2):

MF = max Z 3
! 0<Sl<~u<8k_l f 81 1+1 ( )

where [ < L and k < min(K, ). Intuitively, M} ;* is the optimal
solution when our target is to partition the first [ bands into
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k intervals (the original one is to partition the whole L bands
into K intervals). Specially, M i" is the solution of Eq. (2).

Then by enumerating all the possible value of s;_1, Eq. (3)
can be derived into:

M} = max MED 4+ f(X2E ). 4)

N E—1<sp_1<sp=l *71!
By substituting £ = 1 into Eq. (3), we have:
M} = f(X7). o)

For better comprehension of Eq. (4), an example to decompose
this problem is given in Fig. 3.

| e

— A

| e

, N pr—

] - Gl e

: rpElDe i" [ euny
L] renn——{] {1

.- — ——
IHustration: Bands 1-4 should be further Bands 5-6 have formed
Partitioned into 2 clusters: 2 clusters:
m; FX)+ F(X9)

Fig. 3. An example to calculate Mé1 . As is illustrated, Mé can be obtained
by calculating the maximal value among M3 + f(X¢), M3 + f(X§) and
M3 + f(X$), where M3, M3 and M3 can be further decomposed into
simpler subproblems. It is worth noting that there are overlapped subproblems
in the decomposition (connected by line with red and green color).

2) Subproblem combination. The above analysis uncovers
the optimal substructure attribute implied in the original prob-
lem. According to Eq. (4) and Eq. (5), all the M?, for each
2 < | < L, can be obtained since Ml1 is already known.
Similarly, all the M3, M}, ..., M/* can also be achieved based
on the previous results. Through this order of calculation, all
the values of M} including MX can be obtained efficiently.

We are now at a point to recover the CBIV s* =
(81,85, . s}}fl)T corresponding to M since it is needed to
acquire the final clustering result. Denote QF as the maximizer
corresponding to M}F:

k k—1
Qi = argmax MJ— + f(XF ). (6)
k—1<sp_1<sp=l
It is easy to see that there is:
k
si1 = Qb )

Since s} = L is known, s}-_4,5%_o, ..., 8] can be recovered
by substituting k = K, K — 1, ..., 1 into Eq. (7) sequentially.

For more details about the framework, refer to the pseudo
code shown in Algorithm 1.

Algorithm 1 OCF (D, is maximized)

Input: Set of bands X{, mapping f and cluster number K.
1: for [ < 1 to L do
2: Mll — f(X{)

3: Qll 0

4: end for

5: for kK + 2 to K do

6 for [ +— k to L do

7: Mlk — —00

8 p* <+ 0

9: forp—k—1tol—1do

10: it M < MF'+ f(X],,) then
11: M — M~ + f(XL )
12: prp

13: end if

14: end for

15: QF « p*.

16: end for

17: end for

18: sy « L

19: for k< K —1to 1 do

200 s ijg:l

21: end for

Output: CBIV corresponding to ME: s* = (st,...,s% )T

D. Extended-OCF

In this part, the proposed OCF will be extended to a more
general form, so it can be suitable for more kinds of objective
function that may be more effective. In Eq. (1), the objective
function is defined as the sum of the contribution of each
band interval. In fact, we can attain a more general form of
the objective function via replacing the original sum operator
by an arbitrary binary operator @ : R? — R as follows.

De(s) = f(X511) @ F(XT4) @ @ F(XSE 1) )

In fact, the optimization of Eq. (8) is nearly the same as Eq.
(1). The only difference is to replace “+” operator with “®”
in Eq. (4).

Consequently, given a tuple (@, f), an objective function
can be designed by Eq. (8). Also, it can be readily solved via
OCFE.

E. Rank on Clusters Strategy

After the bands have been separated into clusters, conven-
tional clustering-based band selection methods usually select
one band in each cluster individually by applying some kinds
of criteria, e.g., to select which is closest to the centroid
[31]. However, this kind of strategy is found ineffective
in experiments since the most discriminative bands in each
cluster may not be discriminative with respect to the total
bands.

To tackle this problem, a simple but effective strategy
is proposed to select bands under the achieved clustering
structure. The basic idea is to rank the bands according to
their discriminations, and select those with higher rank values,
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while ensuring that there is only one band selected in each
cluster.

Here we give a more formal description. First, bands are
assigned with rank values, denoted as r = (ry,ra,...,71)7,
where 7; is the rank value of the [-th band. Then we use
g = (91,92,...,9.)7 to record the index of the cluster that
each band belongs to. To be specific, if s]_; < < s}, there
is g = i. Suppose the indexes of K selected bands form
a vector b = (bl,bg,...bK)T. Our purpose is to solve the
following optimization problem:

K
maxg Ty, S.t.
b £

=1

Obviously, the solution is to select the band with the highest
rank value in each cluster:

VJ 7& ke [LK]a gb]‘ 7é gby, - (9)

b (10)

= argmax ry.
sy <I<s}
Intuitively, RCS first assigns rank values to the bands, and
bands with the highest rank values in each cluster are selected
to constitute the desired band subset. In this way, both the
discrimination of bands and the correlation among bands are
taken into account to acquire a more superior band subset.

IV. IMPLEMENTATION OF OCF

In the previous section, we have learnt that how to imple-
ment a band selection algorithm based on OCF when given
an objective function and a ranking method. In this section,
the selection of these two factors and some other issues
in implementing the framework will be discussed. First, the
objective functions and ranking methods utilized in this paper
will be introduced. Then, the computational complexity to
implement the proposed algorithm will be analysed. Finally,
a novel method to identify the number of the selected bands
will be presented.

A. Objective Function

In this paper, two objective functions are adopted to carry
out OCF, namely normalized cut (NC) and top-rank cut (TRC).

Normalized cut criterion. NC is an effective graph-
theoretic criterion that first adopted in spectral clustering
(SC) [43, 44]. Assume there is a weighted undirected graph:
G = (V,W), where V = {1,2,...L} is the node set and W
with entries w;; is the similarity matrix. A K-way partition
of G can be denoted by FV = {V1,Va,...,Vk}, in which
V = UK,V and Vi # j, V;NV; = @. The NC and normalized
association (NA) [43] are deﬁned as:

K
1 2 jevikgvi Wik

NC(TE)=— : (1D
K Zjew,keijk
K
1 > iev kev Wik
Ky _ jeVikevi Wi
NAY) = 2 ) St (12)

i=1 Zje%,kev Wik

NC is supposed to be minimized since partitions with s-
mall NC values have high correlation within groups and
low correlation between groups. According to Eq. (11) and

(12), NC(T'¥) + NA(TE) = 1. Hence, the minimization
of NC is equivalent to the maximization of NA. Without
losing generality, we focus on the maximization of NA in the
following discussion.

Though the optimization of NC (or NA) has been demon-
strated NP-hard [44], it is much easier to be solved when CBIC
is imposed.

According to CBIC, a graph partition F{f =
{Vi1, Vs, ..., Vi '} is dependent on a CBIV s = (s1,...,55_1)7
and there is V; = [s;_1 + 1,s;]. In this sense, NA can be
rewritten as follows:

j si—1+1 Zk Si_ 1+1

K Z] =s;_1+1 Zk}:l Wik

As we can see, Eq. (13) is a special case of Eq. (1) where the
mapping f is defined as:

13)

1030 wm
Ky Y wh
Consequently, NA can be finally maximized by inputting f,,
into Algorithm 1.

One remaining problem is about how to measure the simi-
larities among bands. Here we adopt a non-parameter method
called local scaling [45] to construct such a similarity matrix:

Fra(X]) = (14)

i — ;1
w;j = exp(— ZUicer ), (15)
where 0; = ||x; — X,,]|? is the local scaling parameter, and

X, is the m-th neighbor of x; (m is set to 7 according to
[45]).

Top-rank cut criterion. Except for NC, a novel fop-rank
cut (TRC) criterion is proposed in this paper. There are two
motivations to design TRC. 1) Sometimes, a band interval
with minimal contribution to the value of objective function
has even negative effect on an algorithm’s performance. This
stems from the fact that there may exist noisy bands in that
interval. Hence, to maximize this minimal contribution among
all the band intervals may be a more effective way to attain
the clustering result. 2) Since in the proposed RCS, only the
bands with the highest rank values will be selected in each
subset. Those bands are more important and should have larger
priorities when designing the objective function.

According to Section III-D, we will give the definition of
TRC by giving the tuple (&, f), where the binary operator &
is the maximization operation: Va,b € R,a @ b = max(a,b),
and the mapping f is defined as:

ftrc(Xij) = Z

kel,i)u(4,L]

Wpk, s.t. p=argmaxr;, (16)

i<I<j

in which r; is the rank value of x; calculated when conducting
RCS.

To explain with it, TRC characterizes a band partition in
the following steps: 1) Choose the bands with the highest rank
values in each cluster. 2) For each chosen band x,,, calculate
the sum of similarities between x, and the other bands out
of the cluster it belongs to. This sum value is the score of
the corresponding cluster. 3) The maximum score among all



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, APRIL 2018 7

the clusters is just the TRC value of this band partition. It
should be pointed out that, different from NC, the value of
TRC should be minimized to achieve a promising result. TRC
is easy to be optimized through some minor modifications of
Algorithm 1.

B. Ranking Methods for RCS

To conduct the proposed RCS, a ranking method is needed
to evaluate the importance of bands. In this subsection, some
ranking criteria will be presented and discussed to accomplish
this task.

1) MVPCA [27]. As stated in Section II, MVPCA evaluate
the bands according to their variances. Generally, low variance
means that different ground objects have similar characteristic,
and are difficult to be recognized. In contrary, large variance
represents for more distinctive information, so that ground
objects are easier to be distinguished. Unfortunately, one
disadvantage of MVPCA is that it is sensitive to noises since
noisy bands usually have large variances.

2) E-FDPC [30]. E-FDPC ranks each band by assessing
whether it is a suitable cluster center. First, a cluster center
should have large local density, i.e., there should be lots of
bands close to it. Second, it should be distant from the bands
that have larger local densities than it. For E-FDPC, the first
property eliminates the noisy bands since they usually have
low local density, while the second property helps to reduce
the correlation among bands.

3) Information entropy (IE) [46]. IE is a noise insensitive
criterion to measure the information hidden in a stochastic
variable. For a band x;, its entropy can be defined as:

H(x)) ==Y p(w) log p(w),

weN

A7)

where (Q is the gray-scale color space, and p(w) can be
calculated according to the gray-level histogram of x; [20, 21].

Until now, we have listed all the objective functions and
ranking methods utilized in this paper. For convenient ex-
pression, the devised algorithm will be named following the
pattern “objective function”-OC-‘“ranking method”, e.g., TRC-
OC-FDPC denotes that TRC and E-FDPC are utilized to
implement the algorithm.

C. Analysis of Computational Complexity

The conduction of the proposed algorithm can be decom-
posed into 3 steps, they are pre-processing step, clustering
step and selection step. In the following, we will discuss the
theoretical computational complexity for each step.

Pre-processing step. In this step, we seek to calculate
the mapping f for each kind of objective function. For both
NC and TRC, a similarity matrix should be first calculated
according to Eq. (15), and this takes O(L?N) computational
complexity. For TRC, each band should be further aligned with
rank values, whose complexity is depending on the utilized
ranking methods (which will be discussed in the third step).
Based on these preparatory works, the mapping f can be
calculated according to Eq. (14) and (16) by taking O(L?)
complexity for both NC and TRC.

Clustering step. In this step, the optimal CBIV s* is
obtained by optimizing the objective functions. According to
Algorithm 1, O(L?K) time is needed for both NC and TRC.

Selection step. In the last step, bands should be assigned
with rank values to conduct RCS. For MVPCA, E-FDPC and
IE, their computational complexities are O(LN), O(L?>N) and
O(LN), respectively.

Since K < L « N, we know that all versions of the
proposed algorithm cost O(L2N) time. This is acceptable
for most of the applications. One should be noted that, the
efficiency of the proposed framework is limited by the pre-
processing step and selection step. The clustering step, which
is considered as the main step, is rather more efficient. Hence
we believe the proposed framework is potential to be suitable
for more time-critical applications only if simpler objective
functions and ranking methods are utilized.

D. Determine the Number of the Selected Band

In [27], a variance-based band-power ratio is defined to
determine the required number of bands. It first calculates the
variances 012 for each 1 <[ < L, and sort them in descending
order. Then define a band-power ratio:

k
_ 21:1012
===,

where E = EZLZIUZZ is the sum of variances of all the
bands. According to this ratio, we can know how many bands
is needed to produce a certain percentage of band-power.
However in HSI, bands with large variances may still be
strongly correlated, so there is common part among band
power they produce. With consideration of this characteristic,
a improved method is proposed to measure how much power
can be produced by k low-correlated bands.

We first estimate a upper bound of the required number
of band M, which is given by M = AL, where A\ is a
ratio between 0 and 1. Suppose i1, %9, ...,4as iS the indexes
of M selected bands by NC-OC-MVPCA (the proposed band
selection algorithm using NC and MVPCA). Without loss of
generality, we assume there is o;, > 04, > ... > 0y,,. Then,
the correlation-reduced band-power ratio is formulized as:

k 2
_ 21:1 3,
ECT' ’

Ryar (k) (18)

Rervar (k) (19)
where E.,. = Z,Ail oi . Since the correlation among bands
has been reduced in clustering process, this method can better
characterize the distinct information hidden in different bands.
Finally, given a desired correlation-reduced band-power ratio
R*, we can determine the required number of bands K* by
Rcrvar(K* - ]-) S R* < Rcrvar(K*)-

V. EXPERIMENT

In this section, comparative experiments are conducted on
different HSI data sets. First, we introduce the experimental
setups, including the employed data sets, comparison methods,
classification settings and the number of the required bands.
Then the classification results of all the four data sets are
shown and analysed. Finally the computational times of dif-
ferent methods are compared.
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A. Experimental Setup

Data set. Four real-world HSI data sets captured by two
different image systems are used in the experiments. They are
introduced as follows.

1) Indian Pines Scene. Indian Pines Scene was captured by
AVIRIS sensor in North-Western Indiana in 1992. It consists
of 145 x 145 pixels and 220 spectral reflectance bands in
the wavelength range of 0.4 — 2.5um. There are 16 classes
of objects contained in the image. Water absorbtion bands
including 104 — 108, 150 — 163 and 220 are removed and
a total of 200 bands are utilized.

2) Pavia University Scene. Pavia University Scene was ac-
quired by the Reflective Optics System Imaging Spectrometer
(ROSIS) system during a flight campaign over Pavia, Northern
Italy in 2002. After some pixels with no information discarded,
an image of size 610 x 340 is used. Pavia University Scene
has 103 bands and 9 classes of land cover objects.

3) Salinas Scene. Salinas Scene was captured by AVIRIS
sensor in Salinas Valley, California in 1998. The image size
of Salinas Scene is 512 x 217 with a spectral coverage within
0.4 — 2.5um. There also 224 spectral bands and 16 classes of
interests in the image. Similarly, 20 water absorption bands
are discarded including 108 — 112, 154 — 167 and 224, and
finally a total of 204 bands are used in the experiments.

4) Kennedy Space Center (KSC). KSC was captured by
AVIRIS sensor in Florida, on March 23, 1996. It was acquired
from an altitude of approximately 20km, with a spatial reso-
lution of 18m. there are total 176 bands after removing 48
bands with low SNR or water absorption, and each band is
with size 512 x 614 and has 13 classes of land cover objects.

Comparison method. To verify the effectiveness of the
proposed algorithms, several state-of-the-art methods are in-
cluded as competitors. They are WaLuDi [29], uniform band
selection (UBS) [28], volume gradient band selection (VGBS)
[35], enhanced fast density-peak-based clustering (E-FDPC)
[30], and multi-task sparsity pursuit (MTSP) [37]. About the
parameters among them, WaLuDi, UBS, VGBS and E-FDPC
are parameter-free so only K is needed to be set. For MTSP, its
parameters are tuned on Indian Pines and fixed for the other
three data sets. Note that the proposed framework itself are
parameter-free. The only parameters that needed to be set are
K and the number of the selected bands involved by E-FDPC,
denoted as K. Considering that E-FDPC is used to prioritize
all the L bands, K "is fixed to L for all the data sets.

Classification setting. Four classifiers are utilized to ex-
amine the classification accuracies of different band selection
methods. They are k-nearest neighborhood (KNN) [47], linear
discriminant analysis (LDA) [48], support vector machine
(SVM) [49], and edge-preserving filtering (EPF) [50]. In the
experiments, 10% of the samples for each class are chosen
randomly to train the classifiers, while the rest are used in
testing. To simplify the problem, background is not considered.
In order to reduce the instability caused by the random
selection of the training samples, the final results are achieved
by averaging 10 individual runs.

Number of the required bands. To determine the number
of the required bands, the upper bound M in Section IV-D is
set to %, and R* is set to 0.8 empirically for all the four data

sets. Function R, are plotted in Fig. 4. According to Eq.
(19), the numbers of the required bands are 14, 17, 11 and 10
for Indian Pines, Pavia University, Salinas and Kennedy Space
Center, respectively.

1 ; ; e p ez e A
0.8 L
.}% 06 L —_%  Indian Pines
o / — — Pavia University
> .
g 7 Y, Salinas
Zooa | ¥ / KsC
c /7
3 #
m /
*/ /
02 |
////
*
0 5 10 15 20 25 30

Number of Bands

Fig. 4. The values of Rcrvar against the number of bands on different data
sets.

B. Result Analysis

In this part, we compare the proposed algorithms with some
state-of-the-art methods. Overall accuracy (OA) is involved
as the evaluation criterion. In each data set, three indicators
will be compared. They are: 1) OA curves, i.e., OA values
versus the number of the selected band K (K is set every
3 intervals from 3 - 30). 2) Average OA against different
number of bands. 3) OA value when the number of bands is
determined by Eq. (19). In the experiments, four versions of
the proposed algorithm will be examined. They are TRC-OC-
FDPC, NC-OC-IE, TRC-OC-IE and NC-OC-MVPCA. For
simplicity, only the first two of them will be shown in OA
curves. For comparison purpose, 14 selected bands for all the
methods in Indian Pines are listed in Table I (their indexes are
that before the removal of noisy bands).

Indian Pines Scene. Fig. 5, 6 and 7 show the above three
kinds of indicators on Indian Pines using different classifiers.
In Fig. 5, we can see TRC-OC-FDPC and NC-OC-IE achieve
the best performance, with stable and high OA values against
different number of bands and classifiers. When refer to Fig. 6,
the proposed algorithms achieve higher average OAs compared
to the others. Fig. 7 shows the OA values when 14 bands
are selected. The proposed algorithms also show significant
superiority in this case.

Pavia University Scene. Similar to Indian Pines Scene, the
above three indicators are shown in Fig. 8, 9 and 10. In Fig.
8, the results are different with respect to classifiers. While
KNN is employed, NC-OC-IE attains a stable OA curve but
TRC-OC-FDPC acquires a large decrease when 15 bands are
selected. For other classifiers, they both perform poor when
the number of bands is 6 or 9, but are superior to all the
competitors when it is 12 or 15. In Fig. 9, the difference among
methods is very small. When averaging the results produced
by all the classifiers, NC-OC-MVPCA slightly outperforms
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TABLE I
14 SELECTED BANDS ON INDIAN PINES DATA SET.

Method Names 14 Selected Bands

TRC-OC-FDPC 8/16/28/30/43/50/67/92/123/133/
146/176/182/188/
NC-OC-IE 17/29/42/48/54/119/122/137/146/179/
185/195/204/213/
TRC-OC-IE 15/21/29/42/54/79/89/116/122/127/
146/147/179/201/
NC-OC-MVPCA  17/29/42/48/57/119/122/137/173/180/
185/195/204/213/
UBS 1/16/31/46/62/77/92/113/128/143/
173/188/203/219/
VGBS 1/13/18/20/23/29/34/35/39/57/
61/75/88/89/
MTSP 12/13/29/37/44/45/81/90/112/141/
179/186/202/215/
E-FDPC 50/67/80/92/105/109/118/124/134/137/
142/152/167/179/
WaLuDi 31/49/56/61/67/77/83/99/104/128/
138/163/183/189/
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Fig. 5. OA curves on Indian Pines Scene for different band selection methods.

E-FDPC and ranks the first. In Fig. 10 when 17 bands are
selected, UBS and NC-OC-MVPCA outperform the others
on LDA, SVM and EPF, while E-FDPC performs better on
KNN. When averaging the results, NC-OC-MVPCA and UBS
achieve the best performance.

Salinas Scene. For Salinas Scene, the above three indicators
are shown in Fig. 11, 12 and 13. In Fig. 11, TRC-OC-
FDPC achieves a satisfactory performance, and is superior
to the other methods in general. NC-OC-IE also achieves
good performance. It is more robust against various classifiers
compared to the other 5 competitors. When referring to the
average OA value as shown in Fig. 12, the proposed algorithms
are more effective than the others in most of the cases. In Fig.
13, the proposed algorithms are inferior to VGBS when EPF
is employed, but are still more superior to the others for other
classifiers.

Kennedy Space Center. Similar to the above data sets,
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Fig. 6. Average OA values against the first 30 bands on Indian Pines Scene
for different band selection methods.
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Fig. 7. OA values on Indian Pines Scene for different band selection methods
when 14 bands are selected.

Fig. 14, 15 and 16 show the results of KSC. In Fig. 14,
one can observe that NC-OC-IE and TRC-OC-FDPC show
significant superiority to the others on KNN, SVM and EPF.
While for LDA, E-FDPC also attains good performance. In
Fig. 15, three versions of the proposed algorithm dominate the
others. However, NC-OC-MVPCA achieves a relatively worse
result. In Fig. 16, the proposed algorithms achieve excellent
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Fig. 8. OA curves on Pavia University Scene for different band selection
methods.
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Fig. 10. OA values on Pavia University Scene for different band selection
methods when 17 bands are selected.

and robust performance, especially for TRC-OC-IE and NC-
OC-IE.

In the following, we will discuss about some interesting
issues and give some deep analyses towards the experimental
results.

1) Stability against classifiers. From the results, some com-
petitors have instable performance on different classifiers. For
example, VGBS performs the best on Salinas Scene when
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Fig. 11. OA curves on Salinas Scene for different band selection methods.
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Fig. 12. Average OA values against the first 30 bands on Salinas Scene for
different band selection methods.
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Fig. 13. OA values on Salinas Scene for different band selection methods
when 11 bands are selected.

EPF is employed, but rather poor when KNN or LDA are
utilized. Similarly, E-FDPC is superior to the others on Pavia
University when KNN is used, but not for the other classifiers,
especially when more than 15 bands are selected. This may
be blamed on the selection of noisy bands, which results in
poor performance on classifiers that are sensitive to noises.
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Fig. 14. OA curves on KSC for different band selection methods. (The OA
values of VGBS are lower than the lower bound of y-axes, so they cannot be
seen.)
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Fig. 16. OA values on KSC for different band selection methods when 10
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Compared to the other competitors, the overall performance
of the proposed algorithms is more robust against classifiers.
This proves that they are noise-insensitive to some extent.

2) Robustness against data sets. Some competitors are also
not robust enough against different data sets. For instance, E-
FDPC achieves high OA values on Salinas Scene, but ranks the
last on Indian Pines Scene. This is because it is an extremely
complex problem to select the optimal bands in HSI, and
local optimal solution, which will cause instability is always
unavoidable. Moreover, if there are parameters to be tuned for
a method, fluctuation in accuracy may also occur. Fortunately,
these problems can be well solved by OCF, since it provides a
non-parameter way to achieve the optimal clustering structure
under CBIC.

3) Performance of UBS. It is surprising that UBS achieves
a good performance through a simple strategy that to select
the bands uniformly. Here we try to give an explanation from
physical point of view. As stated in Section III-B, bands with
close wavelengths usually have stronger correlation. In UBS,
the minimum difference of wavelength between two adjacent
bands is maximized, so the correlation among the selected
bands is reduced. From another point of view, the good
performance of UBS proves that difference of wavelength is a
good measurement for band correlation. Hence imposing the
proposed CBIC on band clustering is suitable for HSI data
sets.

4) Performance on KSC data sets. In fact, KSC data set is
seriously polluted by salt noises (pixels with abnormally high

Fig. 17. Band 170 of KSC data set, from which lots of salt noises can be
seen. In fact, this problem also occurs in many other bands.

intensities) as shown in Fig. 17. Hence, the performance on
KSC data sets can examine whether a method is robust to nois-
es. According to Fig. 15, NC-OC-MVPCA and VGBS both
achieve relatively poor performance. This is in accordance
with the analyses in Section II that the variance-based MVPCA
and geometry-based VGBS are very sensitive to noises. On
the other hand, the other versions of the proposed algorithm
achieve satisfactory results on KSC. This further proves that
they are noise-insensitive.

5) Band number determination. According to the plotted OA
curves, Eq. (19) offers a promising estimation of K. One can
observe this from two aspects. First, as illustrated in Fig. 5,
8, 11 and 14, the increasing rate of OA values tends to be
slower at band numbers around the estimations. Second, the
relative relation of the required band numbers among different
data sets is captured. For instance, Pavia University has a
slower increasing rate than Salinas as shown in Fig. 8 and 11.
Accordingly, the required band number of Pavia University is
17, more than that of Salinas (11). However, this method still
has room for improvement. On KSC data set, the estimation
of band number is less than the real value. This is because too
large band power is assigned to the noisy bands by MVPCA.

C. Comparison of Computational Time

In order to evaluate the efficiency of the proposed algorithm-
s, we compare the computational times of various methods on
the above four HSI data sets. The experiments are conducted
using an Intel Core 15-4590 3.30-GHz CPU with 16-GB RAM,
and all the methods are implemented in MATLAB R2016b.
Table II shows the processing time of different band selection
methods when selecting 15 bands on each data set. According
to it, we can find that all versions of the proposed algorithm
cost moderate computational time among the other methods.
Though they are not as efficient as VGBS and E-FDPC, they
take less time compared to MTSP and WaLuDi. Therefore,
the proposed algorithms are computationally acceptable while
guaranteeing the superior performance.

VI. CONCLUSION

In this paper, an optimal clustering framework (OCF) is
proposed to search for the optimal clustering structure on HSI,
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TABLE II
PROCESSING TIME OF DIFFERENT BAND SELECTION METHODS TO SELECT 15 BANDS ON DIFFERENT DATA SETS

Indian Pines Pavia University Salinas KSC

NC-OC-MVPCA 0.40s 0.85s 1.08s 2.48s
NC-OC-IE 0.50s 0.77s 0.91s 1.84s
TRC-OC-IE 0.48s 0.81s 1.03s 1.91s
TRC-OC-FDPC 0.51s 0.72s 1.15s 1.98s
VGBS 0.21s 0.21s 0.37s 0.76s
MTSP 16.59s 9.52s 17.26s 17.39s
E-FDPC 0.07s 0.24s 0.29s 0.79s
WaLuDi 1.69s 7.66s 10.20s 36.14s

and a rank on clusters strategy (RCS) is developed to select the
discriminative bands under the achieved clustering structure.
A correlation-reduced band-power ratio is also presented to
automatically determine the number of the required bands.
Based on the proposed OCF and RCS, several versions of
algorithm are devised by applying various objective functions
and ranking methods. Experiments on four data sets demon-
strate that they are robust and effective.

In the future, we will focus on two issues to improve the
proposed framework. One is to learn the low-dimensional
manifold embedded in HSI, so as to construct a more effective
similarity matrix to describe the correlation among bands.
Another is to design a more powerful objective function to
capture the discrimination of band subsets.
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